

Pergamon

0040-4039(94)01516-3

Amphidinin A, a Novel Amphidinolide-Related Metabolite from the Cultured Marine Dinoflagellate Amphidinium sp.

Jun'ichi Kobayashi*, Naoko Yamaguchi, and Masami Ishibashi

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Abstract: Amphidinin A (1), a novel linear natural product having an unprecedented carbon-skeleton, was isolated from the cultured marine dinoflagellate *Amphidinium* sp. and the structure elucidated on the basis of spectroscopic data. Compound 1 is conceivable to be biogenetically related to amphidinolides.

During our studies on search for new bioactive substances from marine microalgae,¹ we previously isolated a series of cytotoxic macrolides, amphidinolides A ~ N,^{1b} from dinoflagellates of the genus *Amphidinium*, which were living inside of Okinawan marine flatworms of the genus *Amphiscolops*. We further continued investigation on the constituents of this microalga (strain number, Y-5) and now succeeded in isolating a novel non-macrolide natural product, amphidinin A (1), exhibiting moderate cytotoxicity against murine lymphoma L1210 and human epidermoid carcinoma KB cells in vitro (IC₅₀ values, 3.6 and 3.0 μ g/mL, respectively). Here we describe the isolation and structure elucidation of 1, the structural feature of which was suggestive that compound 1 is biogenetically related to amphidinolides.

The harvested algal cells (878 g, wet weight, from 3420 L of culture) were extracted with MeOH/toluene (3:1) and partitioned between toluene and water. The toluene-soluble fraction was subjected to a silica gel column (CHCl₃/MeOH, 95:5) followed by gel filtration on Sephadex LH-20 (CHCl₃/MeOH, 1:1). Further purification by reversed-phase HPLC (ODS; 59% CH₃CN) yielded amphidinin A (1, 0.00006% yield, wet weight), together with amphidinolides A, E, and J.¹

Amphidinin A (1), colorless oil; $[\alpha]_D^{18}$ -300° (c 0.03, MeOH); IR (film) ν_{max} 3400 cm⁻¹; FABMS (matrix: glycerol) m/z 367 (M+H)⁺, had a molecular formula of C₂₂H₃₈O₄ as established by HRFABMS [m/z 367.2828, (M+H)⁺, Δ -2.0 mmu]. Although only poor ¹³C NMR spectrum was obtained for 1 because of the limited sample quantity (no more than 0.5 mg), chemical shifts of carbon signals were able to be assigned from the HMQC² and HMBC³ spectral data (Table 1). The ¹H-¹H COSY spectrum of 1 clearly revealed three proton networks: (i) from OH-1 to H₃-22 (C-1 ~ C-6 unit), (ii) from H₂-21 to H₃-20 (C-7 ~ C-9 unit),⁴ and (iii) from H₂-10 to H₃-18 (C-10 ~ C-17 unit), which were firmly substantiated by HOHAHA⁵ spectrum. These three units were shown to be connected linearly by the HMBC correlations for H₃-22/C-7, H₂-21/C-6, H₃-20/C-10, and H-100/C-20. Since the molecule of 1 was inferred to contain one ring from the unsaturation

position	δ _H		δ _C	HMBC (¹ H)	position		δ _H		δ _C	HMBC (¹ H)
1 (a)	3.65	m	68.5		10	(β)	1.61	đ		
(b)	3.57	m			11		2.09	m	36.7	H-10a, H3-19
1-0H	2.30	br s			12		4.15	đđ	83.7	H3-19
2	4.02	m	73.5		13		5.36	dti	129.4	H ₂ -15
2-OH	4.81	br s			14		5.57	đt	132.7	H ₂ -15
3 (a)	1.73	đt	39.8		15	(2H)	2.62	đ	41.7	H-17a, H3-18
(b)	1.39	br d			16				144.2	H ₂ -15, H ₃ -18
4	4.10	m	69.5	H-3a, H ₂ -5	17	(a)	4.86	8	111.2	H2-15, H3-18
4-OH	4.86	br s				(b)	4.85	8		
5 (2H	l) 1. 49	đ	45.0	H ₃ -22	18	(3H)	1.69	S	22.6	H ₂ -15, H-17b
6	2.77	m	35.7	H2-5, H2-8, H2-21, H3-22	19	(3H)	0.77	đ	15.6	Η-10α
7			151.3	H2-5, H2-8	20	(3H)	1.08	S	26.0	H-8a, H-10a
8 (a)	2.18	d	51.0	H ₃ -20, H ₂ -21	21	(a)	4.88	s	112.0	H ₂ -8
(b)	2.12	d				(b)	4.83	8		-
9			83.0	H-8a, H3-20	22	(3H)	1.06	d	24.5	
10 (a)	1.20	đ	47.7	H3-19, H3-20						

Table 1. ¹H and ¹³C NMR Data of Amphidinin A (1) in C₆D₆^a

 ^{a}J (H/H) in Hz: 1a/1b = 10.8; 1a/2 = 4.0; 1b/2 = 5.6; 2/3a = 7.1; 2/3b = 1.3; 3a/3b = 13.1; 3a/4 = 7.6; 3b/4 = 1.6; 4/5(2H) = 6.1; 1a/2 = 1.6; 5(2H)/6 = 8.4; 6/22 = 6.9; 8a/8b = 13.2; $10a/10\beta = 12.3$; 10a/11 = 9.2; $10\beta/11 = 7.3$; 11/12 = 7.8; 11/19 = 7.0; 12/13 = 8.4; 13/14 = 15.2; 14/15(2H) = 6.9.

degrees, the oxygenated quaternary carbon at C-9 and the oxymethine at C-12 were suggested to be linked through an ether oxygen to form a tetrahydrofuran (THF) ring. This inference was supported by the following characteristic NOESY cross-peaks: H-8b/H₃-19, H-10β/H₃-20, H-10α/H-13, H-10α/H₃-19, H-11/H-12, H-12/H₃-20, and H-13/H₃-19,⁶ from which the relative configurations of H-12, Me-19, and Me-20 on the THF moiety were deduced as β , α , and β , respectively. The geometry of $\Delta^{13,14}$ -double bond was E on the basis of the coupling constant $(J_{13,14} = 15.2 \text{ Hz})$. Thus, the structure of amphidinin A was concluded as 1.

A variety of macrolides with new carbon skeletons have been isolated from dinoflagellates of the genus Amphidinium.¹ Amphidinin A (1), a non-macrolide compound,⁷ also possesses an unprecedented carbon framework, having some structural relationships to previously isolated amphidinolides as follows: (i) vicinally located methyl and exomethylene groups (C-6 ~ C-7 moiety) are also contained in amphidinolides J and K,¹ and (ii) 2-methyl-1,4-pentadiene unit (C-13 ~ C-17 moiety) corresponds to C-22 ~ C-26 positions of amphidinolide E^1 Studies on defining the relative and absolute stereochemistries of chiral centers of 1 based on synthesis are currently under investigation.

Acknowledgment: We thank Prof. T. Sasaki, Kanazawa University, for cytotoxicity tests. This work was partly supported by a Grant-in-Aid from the Uehara Memorial Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

References and Notes

- 1. (a) Kobayashi, J.; Ishibashi, M. Chem. Rev. 1993, 93, 1753-1769. (b) Ishibashi, M.; Yamaguchi, N.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Chem. Commun. in press and references cited therein.
- Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Mag. Reson. 1983, 55, 301-315.
 Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-2094.
- 4. The COSY spectrum showed cross-peaks due to allyl couplings between H2-21 and H2-8, while one of the methylene protons (5H 2.18, H-8a) exhibited a W-type coupling with the singlet methyl protons (H3-20). These observations were further confirmed by the HMBC correlations (e.g., H3-20/C-8 and H2-21/C-8).
- 5. Bax, A.; Davis, D. G. J. Mag. Reson. 1985, 65, 355-360.
- 6. Other NOESY correlations clearly observed (H/H; mixing time, 800 msec): 1a/2, 1b/2, 1a/3b, 1b/3a, 1b/3b, 2/3b, 2/4, 3a/5, 36/4, 4/5, 4/21a, 5/6, 5/21a, 5/22, 6/8a, 6/22, 8a/10a, 8a/22, 86/10a, 86/10β, 86/20, 86/21b, 12/14, 12/13, 13/15, 14/15, 15/17b, 17a/18, 21a/22, and 21b/22.
- 7. For non-macrolide compound from Amphidinium sp., amphidinol: Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. 1991, 113, 9859-9861.

(Received in Japan 27 April 1994; accepted 27 June 1994)